Ch. 3: The Philosophy of Mathematics
(1) What is true? is meaningful?

Motive:? Lädel's Incompleteness Theorems
" "Not everything can be proven"

* Colloquially, this statement roughly translates to the non-pruability of a statement like "This statement is false."
(2) Three main philosophies

Platonism $\stackrel{\approx}{\longleftrightarrow}$ Religion Infinite sets make sense "in my ideal universe"
Formalism \longleftrightarrow Agurtic "Whatever is convenient"
Finitism \longrightarrow Ashiest Infinite sets are nonsense
Case: $\left(\beth_{\omega}\right)^{N_{0}}>\exists_{\omega} \quad($ true by $Z F C)$

* There are many infinite objects here.

$$
\begin{aligned}
& 1+x+x^{2}+\cdots=\frac{1}{1-x} \\
& \left(1+\underline{x}+x^{2}+\cdots\right)(1-\underline{x}) \\
& =1+x+x^{2}-x^{2}=1
\end{aligned}
$$ Faintest

- Platocociris might agree w/ this informally hat would think it's meaningless.

$$
\mid \omega, N_{0}, N_{1}, \underline{P(\mathbb{R})}+\infty
$$

* The finitists may further be said to be "intuitionist" or "instruetionist".
* With regard to the latter, $\varphi \vee \neg \varphi$ is sometimes meaningless.
(e.g., let $\varphi=$ twin prime unjecture). $\varphi \vee \psi$

Rusk: Fidel's Incompleteness Theorems can be formulated for the finitit point of view.

Assumption: Yon ore of least a formalist who has decided to stay. If ut...

* We must then be honest about ? things

1) Formal logic is developed twice: $\varnothing \rightarrow$ Meta $\rightarrow Z F C$
2) We assume $Z F C$ is consistent by contradiction ($Z F C \not Y \operatorname{Con}(Z F C)$).
3) Theorems are in principle formal theorems of $Z f C$. (because wo one will travilube Audi to such or thing?
(3) The Axiom of Choice
*ZFC=ZF + AC. Let us play w/ this by considering the following: ?. Many Zf profs say "choose x st. $\varphi(x)$..." Move formally,

$$
\exists x \varphi(x), \quad \forall x(\varphi(x) \Rightarrow \psi) \mapsto \psi
$$

This resolves to

$$
\left.\forall x\left(\varphi l_{x}\right) \rightarrow \psi\right), \neg \psi \vdash \forall x \neg \varphi(x)
$$

where any notion of choice vanishes.

* This will validate the "EI vale" (Lemma 2.11.8, Kunen 2012).

Ch.4: Recursion Theory
Defn: $C \leq \omega^{\omega}$ is the set of computalle functions (e.g., in the sence of Tuing)

+ For us, cumputalility of a function $f: D^{n} \rightarrow D$ is ove that lauds in D after fluite time.
Defu: A velation $R^{S D^{n}}$ is decidacle if \exists a "imputalle function"

$$
D^{n} \longrightarrow\{T, f\} . \quad(x, y) \in R \Leftrightarrow x \sim y
$$

Dftu: \triangle_{0} will be a set of trivally deciddlle relations, dependiny on D. " $O=H F$ "
Deth. \triangle is the subset of \mathbb{Q}_{0} sulject to decidalility.
$\begin{array}{ll} & (D=H F) \\ \text { Charch-Turing: } \\ R \leq H F^{n} & \text { decidable } \Leftrightarrow R \text { is } \Delta_{1} \text {. A function }\end{array}$
$f: H F^{n} \longrightarrow H F$ is computalie den f is a $\Delta_{\text {, suberet }}$

$$
\text { of } H F^{n+1}, \underbrace{\{ }_{2}(x, f(x)): x \in H F^{n}\} \leq H F^{n+1}
$$

Renk: $H F^{n+1}$ says to inteppret $f \leq M F^{n+1}$ as the grayh of f.
Runk: HF is "hereditarily finite set" \longleftrightarrow each set coneint A sets hich are $H F$, and the temminativy condition is \varnothing.

$$
\int_{\mathcal{H F}}^{\{6,7\}}\{\varnothing,\{\varnothing\}\} \quad\{\mathbb{Z}\} \times H F
$$

